Contextual neural gas for spatial clustering and analysis

نویسندگان

  • Julian Hagenauer
  • Marco Helbich
چکیده

This study aims to introduce and discuss contextual Neural Gas (CNG), a variant of the Neural Gas algorithm, which explicitly accounts for spatial dependencies within spatial data. The main idea of the CNG is to map spatially close observations to neurons, which are close with respect to their rank distance. Thus, spatial dependency is incorporated independently from the attributes of the data and the process of incorporation is less sensitive to local variations in the input data. To discuss and compare the performance of the CNG and GeoSOM, this study draws from a series experiments, which are based on two artificial and one real-world dataset. The experimental results of the artificial datasets show that the CNG produces more homogenous clusters, a better ratio of positional accuracy, and a lower quantization error than the GeoSOM. The results of the real-world dataset illustrate that the resulting patterns of the CNG are theoretically more sound and coherent than the GeoSOM’s, which emphasizes its applicability for geographic analysis tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrofacies clustering and a hybrid intelligent based method for porosity and permeability prediction in the South Pars Gas Field, Persian Gulf

This paper proposes a two-step approach for characterizing the reservoir properties of the world’s largest non-associated gas reservoir. This approach integrates geological and petrophysical data and compares them with the field performance analysis to achieve a practical electrofacies clustering. Porosity and permeability prediction is done on the basis of linear functions, succeeding the elec...

متن کامل

Prediction of pore facies using GMDH-type neural networks: a case study from the South Pars gas field, Persian Gulf basin

The current study proposes a two-step approach for pore facies characterization in the carbonate reservoirs with an example from the Kangan and Dalanformations in the South Pars gas field. In the first step, pore facies were determined based on Mercury Injection Capillary Pressure (MICP) data incorporation with the Hierarchical Clustering Analysis (HCA) method. In the next step, polynomial meta...

متن کامل

Identifying Flow Units Using an Artificial Neural Network Approach Optimized by the Imperialist Competitive Algorithm

The spatial distribution of petrophysical properties within the reservoirs is one of the most important factors in reservoir characterization. Flow units are the continuous body over a specific reservoir volume within which the geological and petrophysical properties are the same. Accordingly, an accurate prediction of flow units is a major task to achieve a reliable petrophysical description o...

متن کامل

Text Data Clustering by Contextual Graphs

In this paper, we focus on the class of graph-based clustering models, such as growing neural gas or idiotypic nets for the purpose of high-dimensional text data clustering. We present a novel approach, which does not require operation on the complex overall graph of clusters, but rather allows to shift majority of effort to context-sensitive, local subgraph and local sub-space processing. Savi...

متن کامل

NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map

Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Geographical Information Science

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2013